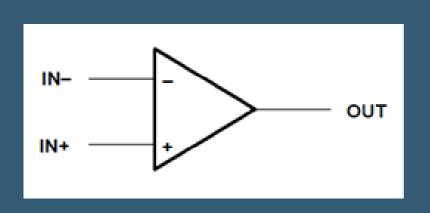
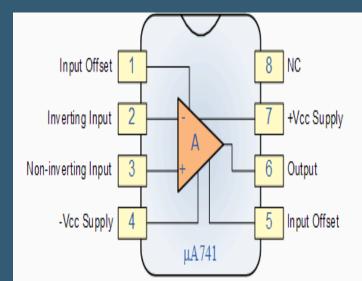


OPERATIONAL AMPLIFIER

Telkom STANDAR KOMPETENSI University STANDAR KOMPETENSI

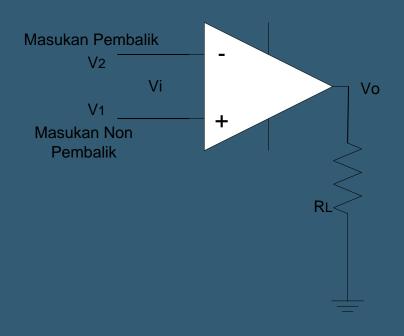

- «Mahasiswa dapat menjelaskan kembali karakteristik operational amplifier
- «Mahasiswa dapat mengetahui contoh aplikasi rangkaian yang menggunakan operational amplifier (op-amp)

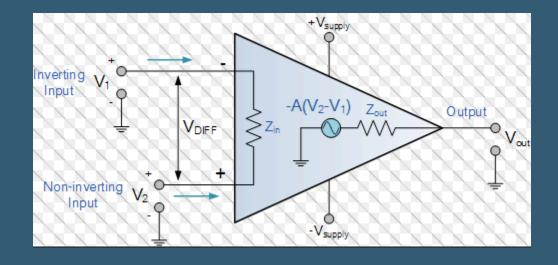


PENGERTIAN OPERATIONAL AMPLIFIER

Penguat operasional (Op-amp) didefinisikann sebagai suatu rangkaian terintegrasi yang berisi beberapa tingkat dan konfigurasi penguat diferensial.

Penguat operasional memilki dua masukan dan satu keluaran





RANGKAIAN DASAR OPAMP

Gambar 2.26. Penguat Operasional dasar

- 1. Penguatan Tegangan Lingkar Terbuka
- 2. Tegangan Offset Keluaran
- 3. Hambatan Masukan
- 4. Hambatan Keluaran
- 5. Waktu Tanggapan
- 6. Karakteristik tidak berubah dengan suhu
- 7. Lebar Bandwidth

PENGUATAN TEGANGAN LINGKAR TERBUKA

 Penguatan tegangan lingkar terbuka adalah penguatan diferensial Op-amp pada kondisi dimana tidak terdapat umpan balik (feedback) yang diterapkan padanya.

Secara ideal, penguatan tegangan lingkar terbuka adalah:

$$A_{VOL} = Vo / Vid = -\infty$$

$$A_VOL = Vo/(V1-V2) = -\infty$$

PENGUATAN OFFSET KELUARAN

Penguatan offset keluaran adalah harga tegangan keluaran dari Op-Amp terhadap tanah (ground) pada kondisi tegangan masukan $V_{id} = o$.

Secara ideal

$$V_{OO} = o Volt$$

HAMBATAN MASUKAN

Hambatan masukan adalah besar hambatan di antara kedua masukan Op-amp.

Secara ideal:

$$Ri = \infty$$

Tetapi dalam kondisi praktis, harga hambatan masukan Op-amp adalah antara 5 k Ω hingga 20 M Ω , tergantung pada tipe Op Amp

Telkom HAMBATAN KELUARAN

Hambatan keluaran aalah besarnya hambatan dalam yang timbul pada saat Op-amp bekerja sebagai pembangkit sinyal.

Secara ideal,

$$R_0 = 0$$
.

WAKTUTANGGAP

Waktu tanggap adalah waktu yang diperlukan oleh keluaran untuk berubah setelah masukan berubah.

Secara ideal:

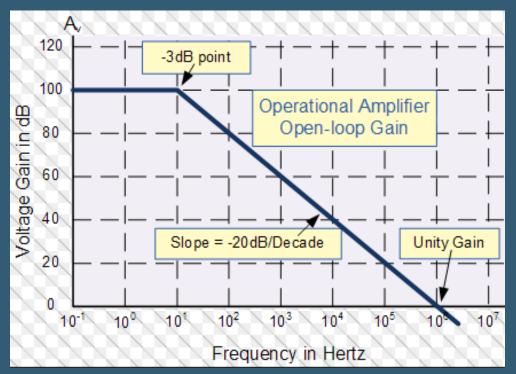
harga waktu respon Op-amp adalah = o detik.

9/20/2017

KARAKTERISTIK TERHADAP SUHU

Suatu bahan semikonduktor akan berubah karakteristiknya apabila terjadi perubahan suhu yang cukup besar.

Pada Op-amp yang ideal, karakteristiknya tidak berubah terhadap perubahan suhu.


Tetapi dalam prakteknya, karakteristik sebuah Op Amp pada umumnya sedikit berubah

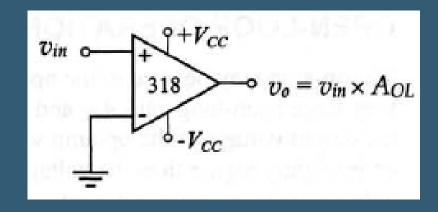
LEBAR BANDWIDTH

Lebar Bandwidth adalah lebar frekuensi tertentu dimana tegangan keluaran tidak jatuh lebih dari 0,707 dari harga tegangan maksimum pada saat amplitudo tegangan masukan konstan.

Secara ideal, harga BW= ∞

OP-AMP RIIL

- Penguatan Tegangan (DC)
 - umum 70-90 dB
 - spesial hingga 140 dB
- Resistansi Input
 - bipolar ratusan $k\Omega$ – $M\Omega$
 - FET puluhan M Ω -G Ω
- Resistansi Output
 - Hingga puluhan Ω
- Tegangan output maksimum
 - 0.2-1V di atas/ dibawah catu daya


- Ketidakidealan lainnya
 - GBW
 - Slew rate
 - Offset tegangan dan arus
 - Penguatan Common Mode (metrik CMRR)
 - Pengaruh ripple catu daya (metrik PSRR)

Parameter	Ideal	LM741	LF347	LM318
Open-loop Gain (A _{OL})	∞	2.105	105	2.105
Input Resistance (R _{in})	∞ Ω	2 Μ Ω	$10^{12}\mathbf{\Omega}$	3 M Ω
Output Resistance (R _o)	0 Ω	75 Ω	75 Ω	75 Ω
Gain Bandwidth Product	∞ Hz	1 MHz	4 MHz	15 MHz
CMRR	∞	90 dB	100 dB	100 dB

- Tegangan keluaran tak kan pernah melampaui V_{cc}.
- Keluaran hanya sampai ke tegangan saturasi yaitu 1 atau 2V dibawah V_{CC}.

$$+V_{sat} = +V_{CC} - 2$$
$$-V_{sat} = -V_{CC} + 2$$

ANY QUESTION?